
Continual Learning of 3D Point Cloud Generators

Michał Sadowski1 �, Karol J. Piczak1 �, Przemysław Spurek1, and Tomasz
Trzciński2,1,3

1 Jagiellonian University
2 Warsaw University of Technology

3 Tooploox
m.sadowski@doctoral.uj.edu.pl, {karol.piczak,

przemyslaw.spurek}@uj.edu.pl, tomasz.trzcinski@pw.edu.pl

Abstract. Most continual learning evaluations to date have focused on
fully supervised image classification problems. This work for the first time
extends such an analysis to the domain of 3D point cloud generation,
showing that 3D object generators are prone to catastrophic forgetting
along the same vein as image classifiers. Classic mitigation techniques, such
as regularization and replay, are only partially effective in alleviating this
issue. We show that due to the specifics of generative tasks, it is possible
to maintain most of the generative diversity with a simple technique
of uniformly sampling from different columns of a progressive neural
network. While such an approach performs well on a typical synthetic class-
incremental setup, more realistic scenarios might hinder strong concept
separation by shifting task boundaries and introducing class overlap
between tasks. Therefore, we propose an autonomous branch construction
(ABC) method. This learning adaptation relevant to parameter-isolation
methods employs the reconstruction loss to map new training examples to
proper branches of the model. Internal routing of training data allows for
a more effective and robust continual learning and generation of separate
concepts in overlapping task setups.

Keywords: continual learning · 3D point clouds · generative models ·
reconstruction loss

1 Introduction

Catastrophic forgetting is a well-known phenomenon of incremental training.
Numerous studies have been performed in supervised image classification prob-
lems [18,5,10] showing that models trained on a sequence of disjoint tasks lose
their discriminative capability very rapidly. This decline is especially profound
when the task identity is not accessible during evaluation (class-incremental
learning).

As continual learning of generative models is still a scarcely researched
subject, most works have concentrated on images. In this paper, we shift our

This is an author accepted manuscript. Final version available at:
https://doi.org/10.1007/978-3-030-92185-9_27

https://doi.org/10.1007/978-3-030-92185-9_27


2 M. Sadowski, K. J. Piczak, P. Spurek, and T. Trzciński

A) Continual learning of 3D point cloud generators

E Z H T

Cars (task 1)

Chairs (task 2)

Cars (task 1)

Chairs (task 2)

Cars (after 2 tasks)

B) Generated objects
(after gradual introduction of chairs)

Baseline model
tendency to generate
mixed shapes

Progressive neural network

column 1: cars
column 2: mixed

PNN with ABC
column 1: cars
column 2: chairs

Fig. 1: Panel A summarizes continual learning of HyperCloud -based point cloud
generators. A convolutional encoder (E) converts training examples into a la-
tent representation (Z) that is used by a hypernetwork decoder (H) to create
dedicated networks (T) transforming uniform spheres into the original shapes.
After introducing a new class, the ability to generate instances of the old class is
quickly forgotten. Panel B shows examples of objects generated in the gradual
introduction task setup. Autonomous branch construction helps maintain concept
separation between columns of a progressive neural network.

focus to generative models of 3D point clouds trained incrementally on an object
reconstruction task. This problem still requires a certain level of complexity from
the model but is much easier to evaluate than its image counterparts relying on
the FID [8] metric.

Our goal is to create a generator that will provide us with a diverse pool of
objects based on all the classes in the training dataset. As the number of encoun-
tered classes grows, we expect that introducing new concepts will not require a
complete re-training of the model. Unfortunately, in contrast to reconstruction
tasks selected by Thai et al. [26], our experiments show that point cloud genera-
tors trained sequentially with new classes rapidly lose their ability to generate
examples of previously seen objects, similarly to their image counterparts.

A typical approach to combat the loss of previous knowledge is to use various
regularization techniques to maintain model parameters close to their values
suitable for previous tasks. Another even more effective solution is to support
the model with some form of memory. For this purpose, we can either use a
memory buffer replaying exact samples from the past or an auxiliary generative
model. Unfortunately, classic regularization and memory-based techniques prove
to be only partially effective in alleviating catastrophic forgetting in point cloud
generators.

Therefore, our first proposition is to apply a simple and effective mechanism
that maintains most of the model’s generative diversity by sampling generated
objects uniformly from all the columns of a progressive neural network [21]. This
approach can also be employed with other similar parameter isolation techniques,
such as PackNet [17] or SupSup [27].

This sampling procedure performs well on a typical class-incremental setup
where task boundaries are clearly defined, and there is no overlap between classes



Continual Learning of 3D Point Cloud Generators 3

in different training exposures. Such an assumption might not hold in more
realistic scenarios, where new concepts can appear gradually, and examples of
previously seen classes can intermix with the current task. While more realistic
task definitions are a still-developing area of research in continual learning, a
couple of papers have proposed methods more suitable for such setups. However,
they mainly concentrate on image tasks and classification problems. In our
case, we can propose a different solution, tailored explicitly for generative tasks
involving a reconstruction loss.

As our main contribution, we propose an adaptation to the learning pro-
cedure, dubbed ABC (autonomous branch construction), applicable to various
parameter isolation techniques which create separate branches of the model. This
method allows for effective learning of new tasks with unknown overlap with
previously seen classes by dynamically matching training examples with the most
corresponding model branch.

2 Related work

2.1 Point cloud generation

Although a 3D point cloud has a seemingly simple structure, its generation
with deep learning is challenging. Gadelha et al. [7] and Stypułkowski et al. [25]
introduced methods based on variational and adversarial auto-encoders, which
are trained by directly optimizing the chamfer (CD) or earth mover’s distance
(EMD) between two point sets, producing a fixed number of points for each
shape. PointFlow, a probabilistic framework proposed by Yang et al. [29], uses a
continuous normalizing flow for the distribution of shapes and points given a shape
for point cloud generation. Spurek et al. [24] introduced the HyperCloud model
based on a hypernetwork, which returns weight definitions for a second network.
This object-specific target network then transforms a uniform 3D ball into a
given shape. The advantage of this approach lies in the possibility of generating
a fully adjustable number of points for each shape, effectively parametrizing its
surface. For this reason, we choose HyperCloud as our baseline model.

2.2 Continual learning for generative models

Works in this area focus mainly on GAN and VAE models trained on MNIST,
Fashion MNIST, SVHN, and CIFAR10. Several authors [22,16,28] apply EWC [13]
and generative replay [23] showing good results from the latter, provided that
the dataset is simple enough.

A different approach in VAE models is latent regularization. Achille et al. [2]
introduce a VASE model for learning nonoverlapping disentangled representations
with an auxiliary classifier inferring the most likely environment and a replay
feedback loop. BooVAE [14] learns the approximation of the aggregated posterior
as a prior for each task, while Keng et al. [11] present a similar approach with
maximization of the mutual information between classes and latent variables
during training.



4 M. Sadowski, K. J. Piczak, P. Spurek, and T. Trzciński

2.3 Unsupervised continual learning

Several papers that have tackled continual learning with more diverse task setups
and unsupervised learning show various resemblances to our approach. Lee et
al. [15] describe a model expansion approach for task-free setups. However, their
problem is multi-class and requires label knowledge. Khare et al. [12] introduce a
similar method for routing training data, though focusing on classification tasks.
Abati et al. [1] use task-specific gating modules inferring the task identity with an
auxiliary task classifier. Continual unsupervised representation learning [20] also
shares many similarities with our work, but it requires deep generative replay to
mitigate forgetting in the shared representation. De Lange & Tuytelaars [4] use
dynamic memory partitioning for replaying prototypes. The importance of task
data distribution has been described by Hsu et al. [9].

3 Our method

In this section, we first characterize continual learning scenarios considered in
our work, motivating why a typical sequence of disjoint tasks might be overly
simplifying. We follow with a description of progressive neural networks, showing
how we can use them in continual learning of point cloud generators, and noting
their potential weaknesses in more elaborate task setups. Finally, we introduce
our method that can mitigate these issues.

3.1 Continual learning setting

There are many scenarios of continual learning experiments. Most of them are
designed specifically for supervised classification problems. Only class-incremental
learning (defined in [10]) is compatible with generative models without the need
to impose additional constraints. It can be easily applied by training a model
sequentially on separate classes chosen from the dataset. Although it perfectly
demonstrates the phenomenon of catastrophic forgetting, such a setup may
oversimplify the problem when applying parameter isolation techniques, which
might easily use different model branches for generative purposes.

Moreover, it is unlikely that we will encounter a perfect separation between
exposures to different classes in real-world problems. More realistic scenarios
should assume the potential for classes to overlap and repeat. Examples of such
more complex data splits for continual learning were introduced in [6,9]. We
follow this approach, and besides standard disjoint class-incremental learning, we
experiment on tasks with shifted boundaries, task repetition, and gradual class
introduction according to the Dirichlet distribution.

3.2 Parameter isolation techniques

One of the most common continual learning parameter isolation methods is the
use of progressive neural networks [21]. This approach works at the architectural



Continual Learning of 3D Point Cloud Generators 5

level by incorporating agents that learn a series of tasks and transfer knowledge
to improve convergence speed. For each new task, we instantiate a new column (a
neural network) and freeze the weights of the rest of the model. In order to prevent
the model from overgrowing, we can decrease layer sizes in consecutive columns.
Knowledge transfer is enabled via lateral connections to the corresponding
layers of previously learned columns. This aspect differentiates progressive neural
networks from simply learning an ensemble of separate models, allowing for faster
knowledge acquisition through forward transfer. A progressive neural network
starts with only one column. When training of the first task completes, this column
is frozen. Then, we add a second column. During training, both columns process
the input. In consecutive tasks, we add new columns analogically. Progressive
neural networks are the most effective when the task identity is known during the
testing phase because it is possible to choose an appropriate column to process
the data. We assume that such information is not available in our experiments.
However, as our goal is not to classify point clouds but to generate a diverse pool
of samples from the model in the testing phase, we propose to sample an equal
number of 3D shapes from each column.

As long as each column learns a single class, this approach performs remarkably
well. However, it deteriorates when we move to tasks in which classes can overlap.
Similar to joint training, it shifts the distribution of the generated objects in the
direction of a shape averaged between classes. To disentangle class information,
we propose autonomous branch construction.

3.3 Autonomous branch construction

We introduce autonomous branch construction (ABC) as an extension for pa-
rameter isolation methods in generative models. The general idea of ABC can be
described as routing of training examples based on a thresholded reconstruction
loss. This allows for effective learning of new tasks with unknown overlap with
previously seen classes.

More specifically, we split each training iteration into two steps: parameter
selection and restricted model weights update.

During the parameter selection step, we pass the whole input batch through
all the branches (columns in PNN nomenclature) of the model and calculate
reconstruction loss for each one of them. Then, we assign each sample to a branch
for which it has the lowest loss. This means that training examples are preferably
assigned to branches that have already encountered a similar concept. If the loss
value exceeds a predefined threshold, we assign them to a new model branch
(column). Throughout each task, only one new branch can be created. If the new
branch has not been selected with a required frequency (e.g. in task repetition
where all concepts can be mapped to previous branches), it is discarded.

In the second phase, we perform backpropagation for standard model loss
and update model weights. However, each reconstructed sample influences only
the branch assigned to it in the parameter selection step. It means that each
branch of the model specializes in specific class reconstruction and generation.



6 M. Sadowski, K. J. Piczak, P. Spurek, and T. Trzciński

4 Evaluation protocol

4.1 Point cloud generation

We evaluate our continual learning setups on a HyperCloud [24] neural network -
a state-of-the-art model for generating 3D point clouds. Its architecture consists
of three neural networks working in tandem, as depicted in Figure 1a. The
encoder part maps an input point cloud to a lower-dimensional latent space. The
hypernetwork decoder maps values from the latent space to a vector of weights,
constructing a separate target network for each object. This network models a
function T : R3 −→ R3, which transforms points from the prior distribution (unit
uniform ball) to the elements of the given object. Therefore, a target network
fully defines a 3D object and can produce any number of points representing its
surface.

The whole system can be trained with a reconstruction loss using a selected
distance metric (e.g., chamfer or earth mover’s distances). In addition to the re-
construction loss, an additional term ensures that the latent values are distributed
according to the standard normal density.

In order to validate that the results are not specific to the application of
a hypernetwork approach, we repeat the baseline experiment on an analogous
model with the decoder mapping latent values directly to 3D shapes (with a
predefined number of points).

4.2 Model evaluation

As our main evaluation metric we choose Jensen-Shannon Divergence (JSD)
which measures the distance between Pr and Pg, the marginal distributions of
points in the Sr (set of reference point clouds) and Sg (set of generated point
clouds), computed by discretizing the space into 283 voxels:

JSD (Pr, Pg) =
1

2
DKL (Pr‖M) +

1

2
DKL (Pg‖M) (1)

where M = 1
2 (Pr +Pg) and DKL(·‖·) is the Kullback-Leibler divergence between

two distributions. We expect the JSD for an ideal model to approach 0, although
a model always generating the average shape can also achieve a perfect score,
which is a drawback of this metric. Therefore, we also support our findings with
additional metrics used for assessing the quality of point cloud generators [3,29]:
coverage (COV), minimum matching distance (MMD) and 1-nearest neighbor
accuracy (1-NNA). These metrics come in two variants employing chamfer (CD)
or earth mover’s distance (EMD) as a measure of similarity.

Besides parameter isolation methods, for the first time, we evaluate point
cloud generators on representative continual learning methods from the other two
general families: replay methods and regularization-based methods. As an example
of regularization techniques, we employ Elastic Weight Consolidation (EWC) [13],
which tries to safeguard values of parameters essential to good performance
on prior tasks by assigning a penalty to deviations from their previous value.



Continual Learning of 3D Point Cloud Generators 7

For comparison, we also employ an identity importance matrix resulting in L2
regularization on the distance to old parameters.

In terms of memory-based approaches, we evaluate generative replay [23],
which, apart from the main task solving network, uses a generator model to
recreate samples of previously seen classes. HyperCloud is a generative model
itself, so there is no need to make this distinction. During training, a copy of
the main model can generate additional data samples, which are concatenated
with each batch of the training data. The ratio r between sampled and real data
depends on the desired importance of a new task compared to older tasks. In our
experiments, we test three different values 20%, 40%, 60%. For comparison, we
also perform experiments with exact replay. Instead of using an old copy of a
generative model to generate data, we sample real data of previous tasks from
different memory buffer sizes (128 or 512) with a 1:1 or 1:2 ratio of old to new
examples.

5 Experiments

5.1 Implementation details

We use HyperCloud architecture as described in [24] where the encoder is a
PointNet-like [19] network consisting of 1D convolutional layers with 64, 128,
256, 512, 512 channels, and fully connected layers with 512 and 2048 neurons.
The latent dimension is set to 2048. The decoder is a fully connected neural
network with layer widths equal to 64, 128, 512, 1024, 2048 and a final layer
mapping directly to the target network. The target network is a small multilayer
perceptron with 32, 64, 128, and 64 neurons. All networks use ReLU activations.

We train the HyperCloud model with Adam optimizer, setting the learning
rate to 0.0001, with standard betas of 0.9 and 0.999, and no weight decay. We
utilize chamfer loss for reconstruction, setting the reconstruction loss coefficient
to 0.05 and KLD loss coefficient to 0.5. We also define the time span of the
progressive unit sphere radius normalization [24] as 100 epochs. The training
batch size is set to 64 and 32 for computing validation metrics. We perform
validation every 10 epochs for the first 50 epochs of a given task, then decay to a
frequency of 25 (past 50 epochs) and 50 (past 100 epochs). Each epoch processes
5000 examples from the current task. The ABC threshold is set at 8.0.

Our main experiment evaluates models trained on point clouds of cars, chairs,
airplanes and tables from the ShapeNet dataset. Each point cloud has 2048
points. 85% of the objects are selected for training purposes, 5% of instances in
the whole dataset are designated for metric evaluation.

We train the first class for 1000 epochs, and subsequent tasks are limited to
500 epochs. For regularization methods, we also perform a hyperparameter sweep
over independent encoder and hypernetwork regularization strengths.

5.2 Task setups

In our baseline class-incremental learning setup, each task consists of samples
from one class (1: cars, 2: chairs, 3: airplanes and 4: tables). In the task repetition



8 M. Sadowski, K. J. Piczak, P. Spurek, and T. Trzciński

sequence, we train models sequentially on three tasks (1: cars, 2: chairs, 3: cars).
The overlapping sequence presents a shift in the task boundary where 30%
examples of the last class are still seen in the new task (1: 100% cars, 2: 30%
cars, 70% chairs). This is akin to baseline training with exact replay. The gradual
introduction of new concepts presents new classes with a decreasing frequency
derived from the expected value of Dirichlet distribution with α = 2 (1: 100%
cars, 2: 69% cars, 31% chairs). This would have a similar effect as an introduction
of a very aggressive replay technique.

5.3 Results

We present detailed results for our evaluation protocols in Table 1. An evolution
of the JSD metric in the main experiment can be seen for selected methods in
Figure 2.

Baseline training without any mitigation technique shows strong signs of
catastrophic forgetting across all metrics. While regularization techniques can
influence this process only marginally, memory-based approaches show a much
more favorable behavior. A progressive neural network (PNN) effectively maps
distinct concepts in a single-class per task scenario. This can be seen in the PNN
generating examples only from the last column, which rapidly diverge from the
mixed distribution. A uniform sampling technique has an excellent profile that
almost matches the best available baseline of joint training on all classes for 2500
epochs.

A significant drawback of progressive neural networks is the cost of model
expansion. In a standard setting, each new column has the same size as the
original model. In order to reduce this impact, we also evaluate a decaying PNN
where the first column is of standard size, but each consecutive column has a 50%
reduced size compared to the previous column. For a sequence of four tasks, we
can safely use such a reduction (from 4 model sizes to 1.875) without impacting
the performance.

We also verify additional variants of the baseline model. Replacing the hyper-
network with a standard VAE decoder has no favorable influence on the final
metrics, similarly with unsupervised pre-training on 30 separate classes. When
compared with a control experiment (additional 1000 epochs on the first task), it
seems that slight improvements are only due to the elongated training procedure.

When we introduce task repetition, vanilla PNN still performs much better
than the baseline model. However, it loses some of its edge due to a shifting
balance in the generated classes. Introducing ABC helps the performance by
preventing the model from creating a new column for a repeated concept.

Similar behavior can be seen with last class overlap. The baseline model
mostly shifts to the new class with some decrease in forgetting due to the replay
characteristic of this setup. Vanilla ABC will learn the new column in the same
way, but it maintains a previous column that helps compensate for this setback.
In contrast, PNN with ABC is capable of better concept isolation, creating two
separate columns, one for each class.



Continual Learning of 3D Point Cloud Generators 9

Table 1: Evaluation of models trained sequentially with different continual learning
techniques. Generative capability is assessed across four metrics (with either
chamfer or earth mover’s distances). Cells represent final metric values after
training on all tasks and validating on an equal mix of all seen classes. Values for
regularization and replay techniques show average results across hyperparameter
sweeps.

Results for incremental learning with single-class tasks

Method JSD
MMD COV% 1-NNA%

CD EMD CD EMD CD EMD

Baseline (HyperCloud) 35.3 14.8 16.7 23.8 22.7 80.3 80.5
Baseline (VAE) 41.4 12.5 17.4 23.4 17.2 88.5 91.6
Baseline with pre-training 33.7 15.6 16.6 28.1 26.6 82.2 82.4
Pre-training control 31.7 14.2 16.2 29.3 29.3 79.1 79.9

L2 regularization 28.6 9.1 14.4 25.1 26.3 91.7 93.9
EWC regularization 28.8 8.9 13.9 28.0 27.0 87.9 88.6
Exact replay 18.1 6.0 11.6 41.8 39.8 75.5 77.1
Generative replay 19.2 10.5 15.1 46.5 48.4 69.1 72.3

PNN (first column) 27.2 17.4 15.0 21.5 19.9 76.8 81.8
PNN (last column) 38.4 15.9 19.7 28.9 27.0 89.3 96.5
PNN (uniform sampling) 9.5 5.4 12.2 51.2 48.4 69.1 83.8
Decaying PNN (uniform) 8.0 5.5 12.2 52.7 48.4 74.8 82.6

Joint training (best case) 8.0 5.0 10.6 54.7 53.5 63.5 65.0

Ideal metric behavior: → 0 → 0 → 100% → 50%

Results for different task setups

Task repetition

Baseline (HyperCloud) 15.3 10.0 11.9 39.5 39.5 71.3 69.7
PNN (uniform sampling) 7.7 3.5 9.3 52.3 50.0 64.6 70.3
PNN with ABC (uniform) 3.8 3.3 8.8 51.6 50.0 63.1 67.4

30% overlap of the last class

Baseline (HyperCloud) 9.1 3.9 9.9 42.6 44.9 67.8 70.7
PNN (uniform sampling) 8.0 3.5 9.7 50.0 46.9 66.4 77.1
PNN with ABC (uniform) 4.9 3.0 8.9 50.8 46.1 58.8 70.3

Gradual introduction of new concepts
Baseline (HyperCloud) 6.2 3.5 9.0 48.8 52.7 68.2 69.7
PNN (uniform sampling) 9.2 4.9 10.3 44.1 49.6 66.8 74.6
PNN with ABC (uniform) 6.6 2.6 9.1 49.2 39.8 59.6 77.5



10 M. Sadowski, K. J. Piczak, P. Spurek, and T. Trzciński

Baseline L2 EWC Exact replay Generative replay

PNN (last) PNN (uniform) Joint training (best case)

Generative capability of sequentially trained models
Evaluated with reference to an equal mix of all previously seen classes (lower value is better)

Task

1: Cars 2: Chairs 3: Airplanes 4: Tables

0

30

0 500 1000 1500 2000 2500

Epoch

JS
D

Fig. 2: JSD values (multiplied by 102) computed between point clouds generated
by respective models and reference examples from the validation set (a balanced
mix of all seen classes). Shaded color bands indicate maximal and minimal metric
values for different settings of hyperparameters. Best viewed in color.

The most challenging setup for PNN is the gradual introduction of new
concepts. This task sequence creates a solid baseline, equivalent to replaying 69%
of old examples with an unlimited memory buffer. On a positive note, memory-
based techniques will not be able to improve it further. In this case, PNN can
only compete with this baseline when using ABC. However, one additional
fact in support of ABC can be inferred by looking at the generated objects
in Figure 1b. Both the HyperCloud baseline and vanilla PNN tend to create
objects that resemble a shape mixed between classes (cars with chair legs instead
of wheels), whereas concepts generated from the ABC-augmented model more
closely resemble the original classes. The JSD metric does not easily capture this
difference.

6 Conclusion

In this work, for the first time, we analyzed 3D point cloud generative models in a
continual learning scenario. We extended our protocol to sequences of exposures
where task boundaries are not clearly defined alongside a typical disjoint single-
class incremental evaluation. We have shown that point cloud generators are prone
to catastrophic forgetting, similarly to models trained continually in classification
tasks. This phenomenon contrasts with the findings of Thai et al. [26], where
continual reconstruction tasks did not exhibit such a behavior. These discrepancies
might be introduced through the specifics of task definitions or the type of model
used.



Continual Learning of 3D Point Cloud Generators 11

We also highlight that in continual learning of generative models, an over-
looked potential lies in applying classic parameter isolation techniques, such
as progressive neural networks. This family of methods is often discarded in
supervised image classification due to the required knowledge of the task identity
at test time. A different formulation of a generative problem, where the goal is
to create diverse objects from all possible classes irrespective of task identity,
creates an opportunity for parameter isolation techniques to outperform other
typical approaches. This is achieved by simple uniform sampling from different
branches of the model at test time.

We have also introduced an adaptation to the learning procedure, named
autonomous branch construction (ABC), which performs a selective mapping of
training examples to respective model branches based on their reconstruction loss
value. This modification proved to be very effective in tasks where new concepts
appear gradually and previously seen examples mix with the current task data.
Such a technique could also be applied to other parameter isolation techniques,
like models pruned through PackNet [17], to mitigate the impact on model size
due to the expanding nature of progressive neural networks.

Acknowledgments

This research was funded by Foundation for Polish Science (grant no POIR.04.04
.00-00-14DE/18-00 carried out within the Team-Net program co-financed by the
European Union under the European Regional Development Fund), National
Science Centre, Poland (grant no 2020/39/B/ST6/01511) and Warsaw University
of Technology (POB Research Centre for Artificial Intelligence and Robotics
within the Excellence Initiative Program - Research University). The author has
applied a CC BY license to any Author Accepted Manuscript (AAM) version
arising from this submission, in accordance with the grants’ open access conditions.

References

1. Abati, D., et al.: Conditional channel gated networks for task-aware continual
learning. IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), 2020.

2. Achille, A., et al.: Life-long disentangled representation learning with cross-domain
latent homologies. Conference on Neural Information Processing Systems (NeurIPS),
2018.

3. Achlioptas, P., et al.: Learning representations and generative models for 3D point
clouds. International Conference on Machine Learning (ICML), 2018.

4. De Lange, M., Tuytelaars, T.: Continual prototype evolution: Learning online from
non-stationary data streams. International Conference on Computer Vision (ICCV),
2021.

5. De Lange, M., et al.: A continual learning survey: Defying forgetting in classification
tasks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021.

6. Deja, K., et al.: Multiband VAE: Latent space partitioning for knowledge consolida-
tion in continual learning. arXiv:2106.12196, 2021.



12 M. Sadowski, K. J. Piczak, P. Spurek, and T. Trzciński

7. Gadelha, M., Wang, R., Maji, S.: Multiresolution tree networks for 3D point cloud
processing. European Conference on Computer Vision (ECCV), 2018.

8. Heusel, M., et al.: GANs trained by a two time-scale update rule converge to a
local Nash equilibrium. International Conference on Neural Information Processing
Systems (NeurIPS), 2017.

9. Hsu, T.M.H., Qi, H., Brown, M.: Measuring the effects of non-identical data distri-
bution for federated visual classification. arXiv:1909.06335, 2019.

10. Hsu, Y.C., et al.: Re-evaluating continual learning scenarios: A categorization and
case for strong baselines. arXiv:1810.12488, 2018.

11. Kang, W.Y., Han, C.H., Zhang, B.T.: Discriminative variational autoencoder for
continual learning with generative replay, 2019.

12. Khare, S., Cao, K., Rehg, J.: Unsupervised class-incremental learning through
confusion. arXiv:2104.04450, 2021.

13. Kirkpatrick, J., et al.: Overcoming catastrophic forgetting in neural networks. Pro-
ceedings of the National Academy of Sciences (PNAS), 114(13), 3521–3526, 2017.

14. Kuzina, A., Egorov, E., Burnaev, E.: BooVAE: A scalable framework for continual
VAE learning under boosting approach. arXiv:1908.11853, 2019.

15. Lee, S., et al.: A neural Dirichlet process mixture model for task-free continual
learning. International Conference on Learning Representations (ICLR), 2020.

16. Lesort, T., et al.: Generative models from the perspective of continual learning.
International Joint Conference on Neural Networks (IJCNN), 2019.

17. Mallya, A., Lazebnik, S.: PackNet: Adding multiple tasks to a single network by
iterative pruning. IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2018.

18. Masana, M., et al.: Class-incremental learning: survey and performance evaluation.
arXiv:2010.15277, 2020.

19. Qi, C.R., et al.: PointNet: Deep learning on point sets for 3D classification and
segmentation. IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2017.

20. Rao, D., et al.: Continual unsupervised representation learning. Conference on
Neural Information Processing Systems (NeurIPS), 2019.

21. Rusu, A.A., et al.: Progressive neural networks. arXiv:1606.04671, 2016.
22. Seff, A., et al.: Continual learning in generative adversarial nets. arXiv:1705.08395,

2017.
23. Shin, H., et al.: Continual learning with deep generative replay. Conference on

Neural Information Processing Systems (NeurIPS), 2017.
24. Spurek, P., et al.: Hypernetwork approach to generating point clouds. International

Conference on Machine Learning (ICML), 2020.
25. Stypułkowski, M., et al.: Conditional invertible flow for point cloud generation.

arXiv:1910.07344, 2019.
26. Thai, A., et al.: Does continual learning = catastrophic forgetting? arXiv:2101.07295,

2021.
27. Wortsman, M., et al.: Supermasks in superposition. Conference on Neural Informa-

tion Processing Systems (NeurIPS), 2020.
28. Wu, C., et al.: Memory replay GANs: Learning to generate images from new

categories without forgetting. Conference on Neural Information Processing Systems
(NeurIPS), 2018.

29. Yang, G., et al.: PointFlow: 3D point cloud generation with continuous normalizing
flows. IEEE/CVF International Conference on Computer Vision (ICCV), 2019.


	Continual Learning of 3D Point Cloud Generators

